References

BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). *Acta Cryst.* 8, 478.

BROWN, G. M. & MARSH, R. E. (1963). Acta Cryst. 16, 191.

- BUSING, W. R. & LEVY, H. A. (1959). A Crystallographic Least Squares Refinement Program for the IBM 704. U. S. Atomic Energy Commission Publication, ORNL 59-4-37. COCHRAN, W. (1953). Acta Cryst. 6, 260.
- COCHRAN, W. (1956). Acta Cryst. 9, 924.

HAMILTON, W. G. (1959). Acta Cryst. 12, 609.

HIGGS, M. A. & SASS, R. L. (1963). Acta Cryst. 16, 657.

- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- JEFFREY, G. A. & SAX, M. (1963). Acta Cryst. 16, 430.
- JENSEN, L. H. & SUNDARALINGAM, M. (1964). Science, 145, 1185.
- McWEENY, R. (1951). Acta Cryst. 4, 513.
- NARDELLI, M., FAVA, G. & GIRALDI, G. (1962). Acta Cryst. 15, 737.

PAWLEY, G. S. (1963). Private communication. ROBERTSON, J. H. (1964). Acta Cryst. 17, 316.

Acta Cryst. (1965). 18, 1058

Topochemistry. XI. The Crystal Structures of Methyl *m*- and *p*-Bromocinnamates

BY L. LEISEROWITZ AND G. M. J. SCHMIDT

Department of X-ray Crystallography, The Weizmann Institute of Science, Rehovoth, Israel

(Received 30 July 1964)

The packing arrangements of methyl *m*- and *p*-bromocinnamates have been determined from zonal and partly three-dimensional photographic data. The molecular shape of these esters, in particular the

conformation of the $C_{\beta}-C_{\alpha}-C_{\alpha}$

C system is discussed in terms of non-bonded interactions between

 C_{β} and the oxygen atoms of the carboxyl group, and compared with the configuration of this system in unsaturated and saturated acids and amides.

Introduction

In part III (Schmidt, 1964) of this series we have discussed the relationship between the photochemical behaviour of some ring-substituted cinnamic acids and their crystal structures. We have pointed out that these acids occur in three packing types (α , β , γ) with several acids crystallizing in more than one such type (dimorphism, trimorphism), that these packing types differ in the geometry of contact between neighbouring >C=C< groups, and that the photochemical behaviour of the three types is explicable in terms of this geometry.

We have now begun an investigation of the crystal chemistry of the esters of cinnamic acids. The photochemistry of methyl cinnamate has been studied by Liebermann & Zsuffa (1911) and by de Jong (1923) who isolated small amounts of an oligomer (n=3,4)and the centric dimer (dimethyl α -truxillate) respectively. It would appear from the work of these authors that the ratio of the two products is temperature dependent, and that the yield of the dimer increases at lower temperatures; in view of the low melting point of methyl cinnamate (33°) the possibility could not be excluded that oligomerization takes place in the melt rather than in the crystalline state. In addition to this complication the cell dimensions of methyl cinnamate (Table 1) measured on a crystal grown by evaporation of an ether solution and photographed in a Lindemann capillary, are not suited to a structure analysis. Three heavy-atom derivatives of the ester were therefore prepared and their crystallographic constants determined (Table 1). The present paper presents the structure

Fig. 1. Numbering of atoms in the present analysis.

Tab	le	l. (Crystal	lographic	constants .	of	some	methy	л	cinnamates
						~,				<i>ciiiiiiiiiiiii</i>

	а	Ь	с	β	Space group	п	d_{calc}
Methyl cinnamate	21.9	5.8	20.99	104°	$P2_1/c$	12	1.25
Methyl <i>p</i> -chlorocinnamate	8.77	5.84	18.75	95·6°	$P2_1/n$	4	1.37
Methyl <i>m</i> -bromocinnamate	7.830	5.976	21.208	99° 31′	$P2_1/a$	4	1.64
Methyl p-bromocinnamate	8.485	20.703	5.764	92·2°	$P2_1/n$	4	1.58

analyses of the methyl esters of m- and p-bromocinnamic acids; the results of the chemical study of the ultraviolet- and γ -irradiation products of these two compounds will be presented elsewhere.

Experimental

Methyl m-bromocinnamate

Methyl *m*-bromocinnamate, prepared by MeOH/HCl esterification of *m*-bromocinnamic acid, had m.p. 55-56°. Crystals grown from slowly cooled solutions in light petroleum (60–80°) are monoclinic needles elong-ated along [100], showing {001} and {011}. The intensities of the *h*0*l* and 0*kl* zones were collected from suitably shaped crystals with nickel-filtered Cu K radiation, and measured visually. No absorption corrections were applied. A trial model was established from the two Patterson projections P(xz) and P(yz) and refined by a combination of $(g_0 - g_c)$ syntheses and of least-squares computations. The latter were based on the diagonal-approximation method (Rossmann, Ja-

cobson, Hirshfeld & Lipscomb, 1959), which has been described, together with the weighting technique employed here, in part V of this series (Rabinovich & Schmidt, 1964). In the later least-squares cycles all the atoms except the methyl carbon were assigned anisotropic temperature factors; in addition, all but the methyl-group hydrogens were inserted on the basis of C-H bond lengths of 1.08 Å and normal bond angles, and kept fixed during the refinement. The refinement process was stopped when $r (=\Sigma w (k^2 F_o^2 - |F_e|^2)^2 / \Sigma w k^4 F_o^4)$ had reached 0.033, corresponding to $R (=\Sigma |kF_o - |F_e||)/\Sigma kF_o)$ of 0.066 for all reflexions excluding those for which $|F_e| < kF_{\text{threshold}}$.

Methyl p-bromocinnamate

Methyl *p*-bromocinnamate, prepared by MeOH/HCl esterification of *p*-bromocinnamic acid, had m.p. 96–97°. Crystals grown from ether solutions by evaporation are monoclinic needles elongated along [001], showing $\{010\}$, $\{110\}$ and $\{120\}$. The intensities of the *hk*0, *hk*1 and *0kl* reflexions were collected from suitab-

	Atom	nic coordinat	es (Å)		The	rmal param	eters (Å ²)	
Atom	x	y	Z	$\overline{U_{11}}$	U ₂₂	U ₃₃	U ₂₃	U_{13}
Br	1.542	1.134	1.052	0.0651	0.0413	0.0330	-0.0016	-0.0006
$\tilde{0}(1)$	4.610	-0.552	8.108	0.0739	0.0276	0.0461	-0.0013	-0.0007
O(2)	4.451	1.563	8.960	0.1027	0.0392	0.0404	-0.0017	-0.0127
$\tilde{\mathbf{C}}(1)$	5.376	-0.954	9.376	0.0	644*			
$\mathbf{C}(2)$	4.205	0.796	8.044	0.0374	0.0239	0.0347	0.0117	-0.0012
$\tilde{C}(3)$	3.525	1.094	6.619	0.0565	0.0404	0.0406	-0.0014	0.0070
C(4)	3.058	2.268	6.324	0.0460	0.0472	0.0458	-0.0154	0.0059
Č(5)	2.353	2.665	4.937	0.0475	0.0283	0.0408	0.0082	0.0133
C(6)	1.659	3.931	4.810	0.0654	0.0182	0.0528	-0.0073	0.0232
$\mathbf{C}(7)$	0.978	4.410	3.588	0.0480	0.0389	0.0479	0.0039	0.0100
$\tilde{C}(8)$	0.929	3.526	2.399	0.0522	0.0237	0.0429	0.0211	0.0088
$\vec{C}(\vec{9})$	1.585	2.263	2.536	0.0433	0.0125	0.0345	-0.0031	0.0107
C(10)	2.324	1.881	3.807	0.0433	0.0311	0.0284	0.0009	0.0009
				U^*				
H(3)	3.36	0.44	5.91	0.076				
H(4)	3.18	3.01	7.12	0.076				
H(6)	1.62	4.46	5.60	0.076				
H(7)	0.42	5.17	3.47	0.076				
H(8)	0.44	3.78	1.57	0.076				
H(10)	2.79	1.10	3.90	0.076				

* Isotropic thermal parameters.

Table 3. Methyl p-bromocinnamate

	Atomic coordinates (Å)			Thermal parameter (Å ²)						
	x	y		$\overline{U_{11}}$	U ₂₂	U ₃₃	U ₁₂	U ₂₃	<i>U</i> ₁₃	
Br	-0.775	4.872	0.107	0.1195	0.0785	0.0991	-0.0231	-0.0100	-0.0205	
0(1)	2.143	11.577	6.030	0.0651	0.0926	0.0612	-0.0122	-0.0356	0.0128	
O(2)	3.579	11.514	4.408	0.0749	0.1323	0.1079	-0.0488	-0.0754	0.0206	
Cũ	3.020	12.582	6.653	0.0949	0.1083	0.0886	-0.0255	-0.0214	-0.0109	
C(2)	2.572	11.141	4.881	0.0564	0.0683	0.1202	0.0079	0.0097	0.0115	
$\tilde{C}(3)$	1.664	10.091	4.223	0.0549	0.0623	0.0804	0.0060	-0.0104	-0.0030	
Č(4)	2.002	9.486	3.169	0.0558	0.0744	0.0636	0.0068	0.0037	0.0106	
$\tilde{C}(\tilde{5})$	1.287	8.423	2.481	0.0207	0.0555	0.0553	-0.0016	0.0128	0.0020	
Č(6)	1.768	7.908	1.237	0.0699	0.0688	0.0587	-0.0043	-0.0004	0.0181	
$\vec{C}(\vec{7})$	1.196	6.863	0.529	0.0729	0.0607	0.0554	0.0025	0.0066	0.0051	
C(8)	0.044	6.321	1.058	0.0605	0.0608	0.0474	0.0002	0.0034	- 0.0063	
C(9)	-0.489	6.786	2.194	0.0596	0.0760	0.0585	-0.0146	0.0080	-0.0014	
C(10)	0.121	7.815	2.886	0.0289	0.0750	0.0726	- 0.0040	0.0065	- 0.0040	

ly shaped crystals with nickel-filtered Cu K radiation and measured visually. Only the extended spots of the hk1 films were read, and corrected for spot extension by the method due to Phillips (1956). No absorption corrections were applied. The trial model deduced from the two Patterson projections P(xy) and P(yz) was refined by means of a modified Busing & Levy leastsquares program. All atoms were treated anisotropically; no hydrogen atoms were included at any stage of the refinement. The final agreement factors after 5 cycles of refinement were r=0.047 and R=0.101.

The scattering factor curves used in both structure analyses were: $f_{C,O}$, Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955); f_{Br} , In-

0 0 0 0 0 0 0 0 0 0 0 0 0 0	3713 3668 4108 5003 27135 - 5017 1406 3707 1572 - 5277 1172 - 5277 1177 - 5277 1177 - 5277 1177 - 5277 1176 - 5217 1176 - 5217 1177 - 5257 1177 - 5257 11777 - 5257 1177 - 5257 11777 - 5257 1177 - 5257 1177 - 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17189221223456122345678910	2158 3163 2159 3164 2159 2631 21294 2955 2056 -179 2056 -1977 2056 -1977 2056 -1977 2057 -2977 2057 -2978 2057 -2978 2057 -2984 2054 -2554 2054	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•xy •y <u>x</u> •vou
11 12 13 4 14 5 6 17 18 19 20 21 22 23 4 23 1 2 3 4 5 6 7 8 9 9	5031 1936 1882 1936 1882 1936 1862 1936 1876 864 1831 1326 1836 -2127 1996 -2127 1996 -2127 1996 -2134 1996 -2134 1997 -1897 2059 1988 2059 1988 2058 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
10 11 13 14 15 16 17 19 20 21	orig 762 639 -530 827 -506 1329 -1326 2321 -2137 1506 -1418 1266 -961 1245 -1890 565 -506 339 -42 <314	$\begin{array}{c} 2.0 \\ 2.1 \\ 2.0 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 4. List of observed and calculated structure factors. Methyl m-bromocinnamate*

* Columns are in the order $h, k, l, 100 F_0, 100 F_c$.

ternational Tables for X-Ray Crystallography (1962), $f_{\rm H}$, McWeeny (1951).

Discussion

The molecular dimensions (Fig. 2) based on the last least-squares cycles are to be regarded as approximate only; better values would certainly require further experimental data. Since we have aimed at determining the packing arrangement only, we have made no effort to improve on the present admittedly incomplete refinement; in particular, overlap in the (100) projection in the *m*-derivative has caused difficulties in the accurate positioning of the carboxyl oxygen and of the ring-carbon 7. The positional and thermal parameters

Table 5. List of observed and calculated structure factors. Methyl p-bromocinnamate*

1 1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 24 25 24 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 1 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 24 5 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 24\\ 5\\ 1\\ 0\\ 2\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 3\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 5 6 7 8 9 11 12 13 14 15 16 17 19 20 7 1 5 5 7 8 9 0 7 1 9 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 2 1 1 2 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 24 25 5 5 5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 6 & 1 & 1 \\ & 5 \\ & 5 \\ & 7 \\ & 9 \\ & 9 \\ & 10 \\ & 112 \\ & 115 $	$\begin{array}{c} 2.469 \\ 2.457 \\ 1.779 \\ 3.94 \\ 4.575 \\ 3.94 \\ 4.575 \\ 3.95 \\ 3.94 \\ 4.575 \\ 3.9$
4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 3 14 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 2 3 4 5 6 0 0 10 11 12 13 14 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10	36,44 -31.61 4,60 -22.09 7,06 8.34 55,53 7,06 8.34 52,57 -2.29 52,57 -2.19 52,57 -2.19 52,57 -2.29 41,05 +41.95 12,80 11.21 30,57 30.72 21,66 -2.01 11,21 30,57 30.72 21,61 -2.69 21,62 -2.01 12,80 11.21 30,57 30.72 21,61 -2.69 21,62 -2.10 12,80 5.57 12,80 5.57 12,80 5.57 12,80 5.57 12,80 5.57 12,80 5.57 12,80 5.57 12,80 5.57 12,80 5.57 12,80 5.57 12,70 5.61 23,61 -2.28 23,61 -2.28 23,62 -2.51 13,79 -2.29 12,80 -2.51 23,60 -2.51	11 12 13 15 15 17 19 20 8 0 1 2 3 4 5 6 7 8 9 10 11 12 5 6 7 8 9 10 11 12 13 0 9 12 13 0 9 12 13 14 15 15 17 15 15 17 19 20 0 1 2 3 4 5 5 10 17 19 20 2 3 4 5 5 10 17 19 20 2 3 4 5 5 5 6 17 19 20 2 3 4 5 5 6 17 19 20 2 3 4 5 5 6 17 19 20 2 5 4 5 5 6 17 19 20 5 6 17 19 20 5 5 5 6 17 19 20 5 4 5 5 6 7 8 9 10 12 10 12 10 12 10 10 12 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3 4 5 6 7 8 9 11 12 15 14 15 16 17 18 19 20 21 22 24 25 4 1 2 24 25 4 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 8 9 10 11 12 13 14 15 16 17 19 20 21 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 7 9 10 11 12 13 14 10 1 0 5 6 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 8 9 10 11 12 13 14 15 14 15 16 17 18 19 20 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 9 1 2 5 5 6 7 8 9 10 11 12 13 -1 0 1	$\begin{array}{c} 5.26 & -3.56 \\ 2.95 & -3.66 \\ 7.711 & -7.19 \\ 10.63 & 9.63 \\ < 2.50 &77 \\ 2.63 & -2.67 \\ .2.63 & -2.67 \\ .2.63 & -2.67 \\ .2.13 & .33 \\ 2.95 & -2.44 \\ < 1.61 & .06 \\ < 1.61 & .06 \\ < 1.61 & .06 \\ .2.68 & 5.46 \\ .161 & .07 \\ .161 &$

* Columns are in the order $h, k, l, 100 F_o, 100 F_c$.

TOPOCHEMISTRY. XI.

Table 5 (cont.)*

2° 1° 5° 5° 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 19 25 6 1 1 22 25 6 7 8 9 10 11 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 12 15 16 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 10 12 14 14 16 20 24 0 1 1 2 2 2 4 5 7 7 8 9 1 1 2 2 2 4 5 7 7 8 9 1 1 1 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 17 17 17 17 17 20 21 0 2 3 4 5 6 7 9 10 12 13 15 17 13 19 0 1 2 3 4 5 6 7 8 9 10 12 13 15 17 17 20 21 0 2 3 4 5 6 6 7 8 9 10 12 13 12 0 2 1 0 2 1 0 2 1 0 1 1 1 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17 19 19 20 21 22 23 25 1 25 1 25 1 25 1 25 1 25 25 25 25 25 25 25 25 25 25 25 25 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 19 20 21 7 0 1 2 5 6 7 8 9 10 11 12 11 12 14 15 16 16 17 16 16 16 16 16 16 16 16 16 16	$ \begin{array}{c} < 2.13 & 1.33 \\ 4.43 & 4.38 \\ 3.94 & -3.44 \\ 2.95 & -2.75 \\ 5.58 & -7.36 \\ 11.49 & 9.28 \\ 2.63 & 3.31 \\ 2.658 & -13.72 \\ 2.13 & -5.76 \\ 8.86 & 7.08 \\ 6.24 & 3.12 \\ 10.18 & -9.50 \\ 9.19 & -10.29 \\ 6.73 & 6.63 \\ 4.27 & -3.84 \\ 9.65 & -9.41 \\ < 2.213 & 2.3 \\ 4.97 & -1.66 \\ 4.43 & 4.03 \\ < 2.12 & 2.11 \\ \end{array} $	6 7 8 9 10 11 12 15 16 15 16 17 18 19 20 21 22 23 24 25 24 25 0 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
12 134 156 178 90 122 34 5 1 2 3 4 5 6 7 8 9 0 1 12 3 4 5 6 7 8 9 10 1 2 3 4 5 7 8 10 1 2 3 4 5 10 1 2 3 4 5 10 1 2 3 4 5 10 1 2 3 4 5 10 1 2 3 4 5 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-5.98 -6.77 11.686 4.100 -1.5.27 8.04 4.25.27 8.04 4.25.27 8.04 4.25.27 8.20 4.27 7.27 4.20 7.27 4.20 7.27 7.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 3 4 5 6 7 8 9 10 112 14 16 17 18 10 12 14 16 17 18 20 22 24 0 1 2 3 4 5 6 7 8 9 10 112 14 5 6 7 8 9 10 112 14 5 6 7 8 9 10 112 14 5 6 7 8 9 10 112 14 5 6 7 8 9 10 112 14 15 16 7 8 9 10 112 16 7 16 9 10 112 16 16 17 18 9 10 112 18 19 10 112 19 10 112 10 112 10 112 10 112 10 112 10 112 10 112 10 112 10 112 10 10 112 10 10 10 10 10 10 10 10 10 10	- 9,002 9,049 - 22,590 16,590 - 16,590 19,263 - 22,191 19,263 - 22,191 19,20,98 - 22,191 10,218 - 22,59 8,707 - 9,910 1,251 - 10,278 8,707 - 2,91 1,255 - 17,155 12,255 - 17,155 12,257 - 2,91 - 1,151 12,251 - 17,05 12,257 - 1,151 12,257 - 1,151 12,257 - 2,91 - 1,155 12,257 - 1,151 12,257 - 1,155 12,257 - 2,91 - 1,155 12,257 - 1,155 12,257 - 1,155 12,257 - 1,155 12,257 - 1,155 12,257 - 1,155 12,257 - 1,257 12,257 - 1,257 12		
21 22 23 24	9.85 -9.69 2.95 -3.40 6.89 7.19 <1.31 -1.68	6 0 % 0 14	<1.01 -1.20 44.48 -50.40 63.85* 77.90 97.48 -89.43	11 12 13 14	6.57 6.70 2.79 3.85 <2.79 -3.66 <2.63 2.29		

* Columns are in the order $h, k, l, 100 F_o, 100 F_c$.

of the last refinement cycles are given in Tables 2 and 3. Packing diagrams are shown in Figs. 3 and 4. Structure factors are listed in Tables 4 and 5, where reflexions believed to suffer from secondary extinction and hence assigned zero weight in the least-squares refinement are asterisked while the unobserved reflexions are marked $< kF_o$. Close intermolecular contacts, arbitrarily boun-

ded at the sums of the van der Waals radii (Pauling, 1960) plus 0.2 Å, are listed in Tables 6 and 7.

Molecular shape.

The equations of the best planes through the benzene ring C(5)-C(10), the ethylenic group C(2)C(3)C(4)C(5) and the group C(2)C(3)O(1)O(2), computed

Table 6. Methyl m-bromocinnamate

Intermolecular contacts (Å) between molecule at (xyz) and its nearest neighbour related by

> 1. *a*-glide plane Br \cdots Br = 3.98 Br \cdots C(8) = 3.75 C(5) \cdots C(7) = 3.60 C(3) \cdots C(6) = 3.58 C(3) \cdots C(5) = 3.53 C(3) \cdots C(4) = 3.53 C(1) \cdots C(1) = 4.06 2. twofold screw axis

- 2. twofold screw axis $C(1) \cdots C(1) = 3.98$ $C(1) \cdots O(2) = 3.21$
- 3. inversion centre at (000) Br \cdots Br = 4.12

Table 7. Methyl p-bromocinnamate

Intermolecular contacts (in Å) between molecule at (xyz) and its nearest neighbour related by

1. n-glide pla	ine
$C(5) \cdots E$	r = 3.68
$C(6) \cdots E$	r = 3.41
$C(7) \cdots E$	r = 3.56

- 2. twofold screw axis Br \cdots C(1) = 3.77
- 3. inversion centre at $(0\frac{11}{22})$ $C(1) \cdots C(10) = 3.79$ $C(3) \cdots C(10) = 3.55$
- 4. inversion centre at $(\frac{1}{2}\frac{1}{2}\frac{1}{2})$ O(2) · · · C(6) = 3·39
- 5. translation along cC(3) · · · C(6) = 3.53

according to Schomaker, Waser, Marsh & Bergman (1959) are listed, together with the deviations of atoms from their planes, in Tables 8 and 9. In both compounds the benzene rings and the ethylenic systems

may be regarded as planar. The C-C

system is

planar in the *p*-derivative; in the *m*-compound the CH₃ group is displaced by 0.1 Å from the plane of (C-CO₂). This deviation from planarity cannot be accounted for in terms of intermolecular contacts: the distances between CH₃ and its two nearest neighbours (Table 6) do not change significantly when the methyl group is moved into the plane of (C-CO₂).

At the outset of these structure determinations we held to the view that the >C=O bond of the carboxyl group would adopt the *trans* configuration with respect to the >C=C< bond which had been found in *trans*cinnamic acid (Ladell, McDonald & Schmidt, unpublished). In fact, the *cis* arrangement is adopted by both *p*- and *m*-bromocinnamates.

We may assume that, as a first approximation, the

conformation of the $C_{\beta}-C_{\alpha}-C_{\alpha}$ system is determined

by the non-bonded interaction between C(4) and its hydrogen, H(4), on the one hand and the 'ether' and 'carbonyl' oxygen atoms O(1) and O(2) on the other hand. Since the C(3)-C(2)=O(2) angle is larger than the C(3)-C(2)-O(1) angle greater C(4) \cdots O and H(4) \cdots O separation will be achieved if C(4)-H(4) lies opposite the 'carbonyl' oxygen atom, *i.e.* if the

Fig. 2. Experimental bond lengths and angles. (a) Methyl m-bromocinnamate. (b) Methyl p-bromocinnamate.

Table 8. Methyl m-bromocinnamate

	Equat	ions of best p	lanes		
		M_1	M_2	M_3	d
Benzene ring	$C(5) \cdots C(10)$	6.8680	2.5987	- 7.3409	1.5166
Ethylenic group	$C(2) \cdot \cdot \cdot C(5)$	7.2933	1.6342	-8.2885	0.9935
	C-CO ₂	7-3141	1.4294	- 8.8199	0.7951

Equation of best plane: $M_1x + M_2y + M_3z - d = 0$, where xyz are fractional coordinates.

Deviations from best planes (Å)

Atom	Benzene ring	Atom	Ethylenic group	Atom	C-CO ₂
C(5)	-0.003	C(2)	-0.003	C(2)	-0.022
C(6)	-0.017	C(3)	0.003	C(3)	0.007
C(7)	0.017	C(4)	0.003	O (1)	0.007
C(8)	0.002	C(5)	-0.003	O(2)	0.010
C(9)	-0.021				
C(10)	0.022			C(1)	0.099

Fig. 3. Methyl *m*-bromocinnamate. Packing diagram and electron-density projection along (a) [010], (b) [100]. Contour interval 1 e.Å⁻² except at bromine atom. Lowest contour 2 e.Å⁻².

Table 9. Methyl p-bromocinnamateEquations of best planes

squations of best pla

	M_1	M_2	M_3	d
$C(5) \cdots C(10)$	-4.5646	13.6065	-2.9218	3.6031
$C(2) \cdots C(5)$	-3.7574	14.3926	-3.1637	3.9449
C-ĆO ₂	- 4.1889	14.9627	-2.6772	4.5113
	$C(5) \cdots C(10)$ $C(2) \cdots C(5)$ $C-CO_2$	$\begin{array}{ccc} & & & & M_1 \\ C(5) \cdots C(10) & & -4 \cdot 5646 \\ C(2) \cdots C(5) & & -3 \cdot 7574 \\ C-CO_2 & & -4 \cdot 1889 \end{array}$	$\begin{array}{cccc} & & & & M_1 & & M_2 \\ C(5) \cdots C(10) & -4 \cdot 5646 & & 13 \cdot 6065 \\ C(2) \cdots C(5) & -3 \cdot 7574 & & 14 \cdot 3926 \\ C-CO_2 & -4 \cdot 1889 & & 14 \cdot 9627 \end{array}$	$\begin{array}{ccccccc} & M_1 & M_2 & M_3 \\ C(5) \cdots C(10) & -4 \cdot 5646 & 13 \cdot 6065 & -2 \cdot 9218 \\ C(2) \cdots C(5) & -3 \cdot 7574 & 14 \cdot 3926 & -3 \cdot 1637 \\ C-CO_2 & -4 \cdot 1889 & 14 \cdot 9627 & -2 \cdot 6772 \end{array}$

Equation of best plane: $M_1x + M_2y + M_3z - d = 0$, where xyz are fractional coordinates.

Deviations from best planes (Å)

Atom	Benzene ring	Atom	Ethylenic group	Atom	C-CO ₂
C(5)	-0.012	C(2)	-0.018	C(2)	0.004
C(6)	0.017	C(3)	0.012	C(3)	-0.005
C(7)	-0.004	C(4)	0.024	O(1)	-0.005
C(8)	-0.009	C(5)	-0.021	O(2)	-0.005
C(9)	0.008				
C(10)	0.002			C(1)	0.001

0 1 2Å

Fig. 4. Methyl *p*-bromocinnamate. Packing diagram and electron-density projection along (*a*) [100], (*b*) [001]. Contour intervals as in Fig. 3.

Table 10. Non-bonded distances in cis and trans conformation of acids and amides

 $C_{\alpha}-C_{\beta}$ and C=O bonds in the $C_{\beta}-C_{\alpha}-C_{\alpha}$ system

adopt the *cis* conformation around the C_{α} -C bond. Numerically, in the present instances, the two contacts $C(4) \cdots O(2)$ and $H(4) \cdots O(2)$ (calculated on the assumption of C-H = 1.08 Å and H(4)C(4)C(3) = 120°) are 2.86 and 2.55 Å, and 2.83 and 2.46 Å in the *m* and *p*-esters respectively. The corresponding $C(4) \cdots O(1)$ and $H(4) \cdots O(1)$ contact distances in the alternative trans conformation would be 2.58 and 2.16 Å, and 2.69 and 2.20 Å. Since the non-bonded contacts in the *cis* conformation are closer to the sums of the van der Waals radii of the atoms involved ($C \cdots O: 3 \cdot 1 \text{ Å};$ $O \cdots H: 2.6$ Å) the *cis* conformation is evidently preferred. The small angles of twist around the bond C(2)-C(3) $(m:2\cdot5^\circ; p:5\cdot2^\circ)$ presumably permit conjugation between the >C=C< and the >C=Ogroups; in a hypothetical 'trans' model, constructed with the observed non-bonded contact distances $C(4) \cdots O(2)$ and $H(4) \cdots O(2)$ the bond angles C(4)-C(3)-O(2) and C(3)-C(2)-O(1) would have to be increased or else the angle of twist between the >C = C < and the carboxylate groups increased by as much as 45°; the consequent loss of coplanarity would presumably lead to lowered conjugation as well as to less efficient packing.

The present argument can be extended to unsaturated as well as to saturated acids, and according to Table 10 is valid for all the acids listed there. The exception provided by α -trans-cinnamic acid, in which the > C = C < and > C = O groups lie in the trans-conformation, may well be due to the small difference between the C(3)-C(2)-O(1) and C(3)-C(2)-O(2) angles. In o-chloro- and o-bromobenzoic acids the significant non-bonded interactions are those between the halogen substituent on the ' β ' carbon and the oxygen atoms of the carboxyl group; according to Table 10 the observed cis conformation clearly provides for longer contacts and hence is sterically favoured.

In the amides such as succinamide (Davies & Pasternak, 1956) and *trans*-cinnamide (Osaki & Schmidt, unpublished) an additional interaction enters into the picture: the planar and near-planar configuration of all atoms

including hydrogen in the system $C-C-C_{\chi}$

would

produce in the *trans* conformation of C_{α} - C_{β} and C = O too close an approach between a hydrogen atom of the NH₂ group and C_{β} and H_{β} (Table 10).

Double-bond contacts

According to Fig. 3 the contact of nearest-neighbour >C=C< groups of the *m*-derivative is provided by the *a* glide, perpendicular to the short *b* axis; the molecular stack along *a* thus contains successive criss-crossed >C=C< bonds. This geometry of contact between the double bonds is therefore different from

								Observed	
C(3)-C(2)-O(1)	C(3)-C(2)-O(2)	$C(4) \cdots O(2)$	$C(4) \cdots O(1)$	١P	$H(4) \cdots O(2)$	H(4) · · · O(1)	Δ_2 c	onformation	Reference
117°	125°	2.88*	2·74†	0·14	2·78*	2·63†	0.15	cis	Scheuerman &
									Sass (1962)
114°	124°	2.80^{*}	2.60†	0.20	2·73*	2.53†	0.20	cis	Morrison &
									Robertson (1949a)
116°	120°	2.81*	2·77†	0.04	2.79*	2·73†	0.06	cis	Morrison &
									Robertson (1949b)
116°	122°	2.78*	2·67†	0-11	2.46*	2·33†	0.13	cis	Higgs & Sass
									(1963)
113°	125°	2.86^{*}	2.66†	0.20	2.57*	2·31†	0.26	cis	Chatani, Sakata
									& Nitta (1963)
113°	121°	2·83*	2·70†	0.13	2.56*	2.38†	0·18	cis	Robertson &
									Sutherland [‡]
116°	122°	2.85*	2-76†	60·0	2-60*	2·46†	0·14	cis	Robertson &
									Sutherland [‡]
d 115°	119°	2·77†	2.74*	0-03	2·44†	2.36*	0·08	trans	Ladell, McDonald
									& Schmidt
					Cl · · · 0(2)	$CI \cdots O(1)$			
1 113°	122°				2.892*	2·69†	0·20		Ferguson & Sim
					-00	100.1.2			(1961)
					(7)0 · · · Id				
114	1202				3.004*	2.13*	17.0		rerguson & aim
C(3)-C(2)-N 116°	C(3)-C(2)-O(2) 122°	$C(4) \cdots O(2)$ 2.80*	$C(4) \cdots N$ 2·70+	${}^{A_3}_{0\cdot 10}$	$C(4) \cdots H(N)$ 2.22†	$H(4) \cdots H(N)$ 1.99†			Davies &
			-		-	-			Pasternak (1956)
¬, ▼*	$= C(4) \cdots O(2) - C(4)$	$4) \cdots C(1); \Delta_2 =$:H(4) · · · O(2)–H ↑ Calculated for	l(4) · · ·	$O(1); \mathcal{J}_3 = C(4) \cdot d$	$\cdot \cdot O(2)-C(4) \cdot \cdot$	· N . cation.		
	C(3)-C(2)-O(1) 117°-O(1) 116° 116° 113° 113° 113° 113° 113° 113° C(3)-C(2)-N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(3)-C(2)-O(1)C(3)-C(2)C(4) \cdots O(2)117°125°2.88*114°124°2.80*116°120°2.81*116°120°2.81*116°122°2.85*113°122°2.85*113°121°2.83*113°121°2.85*113°121°2.83*113°121°2.83*1119°2.85*1119°2.85*1112°2.85*1112°2.85*1112°2.85*1119°2.85*1119°2.85*1119°2.85*1119°2.85*1113°122°1116°2.80*1116°2.80*1116°2.80*1116°2.80*116°2.80*116°2.80*116°2.80*116°2.80*116°2.80*116°2.80*116°2.80*116°2.80*116°122°116°2.80*116°2.80*116°122°116°2.80*116°2.80*116°2.80*116°122°116°2.80*116°122°116°122°116°122°116°2.80*116°120*116°120*120*	C(3)-C(2)-O(1)C(3)-C(2)C(4) \cdots O(2)C(4) \cdots O(1)117°125°2.88*2.60†114°124°2.80*2.60†116°120°2.81*2.77†116°120°2.81*2.77†116°122°2.81*2.77†113°122°2.86*2.66†113°121°2.78*2.67†113°121°2.78*2.66†113°121°2.83*2.70†1113°121°2.83*2.70†1113°122°2.85*2.74*1113°122°2.85*2.70†1113°122°2.85*2.70*1113°122°2.85*2.70*1113°122°2.77†2.74*1116°2.70*2.77†2.74*1113°122°2.77†2.74*1116°2.85*2.77†2.74*1113°122°2.77†2.74*1116°2.60*2.77†2.74*1116°2.60*2.77†2.74*1116°2.85*2.77†2.74*1113°122°2.60*2.70*1116°2.80*2.70*2.70*1116°2.80*2.80*2.70*1116°2.80*2.80*2.70*1126°2.80*2.80*2.70*1126°2.80*2.80* <td>C(3)-C(2)-O(1)C(3)-C(2)-O(2)C(4) \cdots O(2)C(4) \cdots O(1)$J_1$$117^{\circ}$$125^{\circ}$$2\cdot88*$$2\cdot60^{\circ}$$0\cdot20$$114^{\circ}$$124^{\circ}$$2\cdot80*$$2\cdot60^{\circ}$$0\cdot20$$116^{\circ}$$120^{\circ}$$2\cdot81*$$2\cdot77^{\circ}$$0\cdot04$$116^{\circ}$$122^{\circ}$$2\cdot81*$$2\cdot77^{\circ}$$0\cdot04$$113^{\circ}$$122^{\circ}$$2\cdot86*$$2\cdot67^{\circ}$$0\cdot11$$113^{\circ}$$122^{\circ}$$2\cdot78*$$2\cdot77^{\circ}$$0\cdot03$$113^{\circ}$$122^{\circ}$$2\cdot86*$$2\cdot66^{\circ}$$0\cdot20$$113^{\circ}$$122^{\circ}$$2\cdot86*$$2\cdot66^{\circ}$$0\cdot03$$113^{\circ}$$122^{\circ}$$2\cdot86*$$2\cdot70^{\circ}$$0\cdot03$$116^{\circ}$$122^{\circ}$$2\cdot85*$$2\cdot74*$$0\cdot03$$116^{\circ}$$119^{\circ}$$2\cdot77^{\circ}$$2\cdot74*$$0\cdot03$$1113^{\circ}$$122^{\circ}$$2\cdot77^{\circ}$$2\cdot74*$$0\cdot03$$1113^{\circ}$$122^{\circ}$$2\cdot77^{\circ}$$2\cdot74*$$0\cdot03$$1116^{\circ}$$126^{\circ}$$2\cdot77^{\circ}$$2\cdot74*$$0\cdot03$$1116^{\circ}$$126^{\circ}$$2\cdot70^{\circ}$$2\cdot74*$$0\cdot03$$1116^{\circ}$$126^{\circ}$$2\cdot30^{\circ}$$2\cdot70^{\circ}$$0\cdot04^{\circ}$$1116^{\circ}$$126^{\circ}$$2\cdot30^{\circ}$$2\cdot70^{\circ}$$0\cdot10^{\circ}$$1116^{\circ}$$2\cdot30^{\circ}$$2\cdot30^{\circ}$$2\cdot70^{\circ}$$0\cdot03^{\circ}$$1116^{\circ}$$122^{\circ}$$2\cdot70^{\circ}$$2\cdot70^{\circ}$$0\cdot03^{\circ}$$1116^{\circ}$$126^{\circ}$$2\cdot10^{\circ}$$2\cdot70^{\circ}$$0$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	C(3)-C(2)-O(1)C(3)-C(2)-O(2)C(4) \cdots O(2)C(4) \cdots O(1) J_1 117° 125° $2\cdot88*$ $2\cdot60^{\circ}$ $0\cdot20$ 114° 124° $2\cdot80*$ $2\cdot60^{\circ}$ $0\cdot20$ 116° 120° $2\cdot81*$ $2\cdot77^{\circ}$ $0\cdot04$ 116° 122° $2\cdot81*$ $2\cdot77^{\circ}$ $0\cdot04$ 113° 122° $2\cdot86*$ $2\cdot67^{\circ}$ $0\cdot11$ 113° 122° $2\cdot78*$ $2\cdot77^{\circ}$ $0\cdot03$ 113° 122° $2\cdot86*$ $2\cdot66^{\circ}$ $0\cdot20$ 113° 122° $2\cdot86*$ $2\cdot66^{\circ}$ $0\cdot03$ 113° 122° $2\cdot86*$ $2\cdot70^{\circ}$ $0\cdot03$ 116° 122° $2\cdot85*$ $2\cdot74*$ $0\cdot03$ 116° 119° $2\cdot77^{\circ}$ $2\cdot74*$ $0\cdot03$ 1113° 122° $2\cdot77^{\circ}$ $2\cdot74*$ $0\cdot03$ 1113° 122° $2\cdot77^{\circ}$ $2\cdot74*$ $0\cdot03$ 1116° 126° $2\cdot77^{\circ}$ $2\cdot74*$ $0\cdot03$ 1116° 126° $2\cdot70^{\circ}$ $2\cdot74*$ $0\cdot03$ 1116° 126° $2\cdot30^{\circ}$ $2\cdot70^{\circ}$ $0\cdot04^{\circ}$ 1116° 126° $2\cdot30^{\circ}$ $2\cdot70^{\circ}$ $0\cdot10^{\circ}$ 1116° $2\cdot30^{\circ}$ $2\cdot30^{\circ}$ $2\cdot70^{\circ}$ $0\cdot03^{\circ}$ 1116° 122° $2\cdot70^{\circ}$ $2\cdot70^{\circ}$ $0\cdot03^{\circ}$ 1116° 126° $2\cdot10^{\circ}$ $2\cdot70^{\circ}$ 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

that observed in the previously analysed cinnamic acid derivatives in which nearest-neighbour >C=C<groups are parallel (related by translation) or antiparallel (related by centres of symmetry). The centre-tocentre distance of nearest-neighbour >C=C< groups is 3.93 Å; contacts between C(3) and C(4') and C(3') and C(4) of adjacent glide-plane related molecules are 3.53 Å and 4.33 Å respectively. It follows from these values that interaction between two molecules is possible and likely to take place in the first instance between C(3) and C(4').

The *p*-derivative displays the packing arrangement of the α type in the cinnamic acid series since contacts between nearest-neighbour > C=C< groups occur across centres of symmetry. Three sets of such contacts are present (Fig. 4); the centre-to-centre distances across the inversion centres at $(0\frac{11}{22})$, $(\frac{11}{222})$, and $(0\frac{1}{20})$ are 4.11, 5.29, and 5.74 Å respectively. In the light of our previous results we should expect photochemical interaction across the centre at $(0\frac{11}{22})$ with formation of the centrosymmetric dimer, dimethyl 4,4'-dibromo- α -truxillate.

We thank Prof. J. M. Robertson, F. R. S. and Dr S. A. Sutherland for permission to use their unpublished results on crotonic and sorbic acids. Our thanks are due to Mr. S. Filippakis for assistance with the experimental work. We gratefully acknowledge support of this work by the National Bureau of Standards, Washington, D.C., under contract NBS G-10.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- CHATANI, Y., SAKATA, Y. & NITTA, I. (1963). Polymer Letters, 1, 419.
- DAVIES, D. R. & PASTERNAK, R. A. (1956). Acta Cryst. 9, 334.
- FERGUSON, G. & SIM, G. A. (1961). Acta Cryst. 14, 1262.
- FERGUSON, G. & SIM, G. A. (1962). Acta Cryst. 15, 346.
- HIGGS, M. A. & SASS, R. L. (1963). Acta Cryst. 16, 657.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 206. Birmingham: Kynoch Press.
- JONG, A. W. K. DE (1923). Ber. dtsch. chem. Ges. 56, 818.
- LIEBERMANN, C. & ZSUFFA, M. (1921). Ber. dtsch chem. Ges. 44, 841.
- McWEENY, R. (1951). Acta Cryst. 4, 513.
- MORRISON, J. D. & ROBERTSON, J. M. (1949a). J. Chem. Soc. p. 980.
- MORRISON, J. D. & ROBERTSON, J. M. (1949b). J. Chem. Soc. p. 993.
- PAULING, L. (1960). *The Nature of the Chemical Bond*, 3rd ed., p. 260. Ithaca: Cornell Univ. Press.
- PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.
- RABINOVICH, D. & SCHMIDT, G. M. J. (1964). J. Chem. Soc., p. 2030.
- ROSSMANN, M. G., JACOBSON, R. A., HIRSHFELD, F. L. & LIPSCOMB, W. N. (1959). Acta Cryst. 12, 530.
- SCHEUERMAN, R. F. & SASS, R. L. (1962). Acta Cryst. 15, 1244.
- SCHMIDT, G. M. J. (1964). J. Chem. Soc., p. 2014.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.

Acta Cryst. (1965). 18, 1067 The Crystal and Molecular Structure of D(+)-Barium Uridine-5'-Phosphate*

BY ELI SHEFTER AND K. N. TRUEBLOOD

Department of Chemistry[†], University of California, Los Angeles, California, 90024, U.S.A.

(Received 24 September 1964)

The crystal structure of hydrated barium uridine-5'-phosphate has been determined by three-dimensional Patterson and Fourier syntheses. The anomalous scattering of Cu K radiation by the barium (and phosphorus) atoms made it possible to confirm the absolute configuration of the molecule. The structure was refined by block diagonal least squares which made use of two unique octants of intensity data by incorporating the complex parts of the atomic scattering factors. The final R value was 9.8% for 1502 *hkl* and 1000 *hkl* intensity data.

The geometry and absolute configuration of the molecule are in accord with previous studies on nucleotides. The barium ions lie in two independent special positions and each ion is surrounded by ten oxygen atoms. The nucleotides pack compactly, with pairs of base planes nearly parallel but only partially overlapping, and a close contact of O(1') of one molecule with the pyrimidine ring of another. The conformation about the C(5')-C(4') bond in ribose derivatives and related molecules has been considered in detail, and its bearing on nucleotide conformation discussed. A suggested hydrogenbonding scheme is illustrated.

Introduction

Divalent metal ions, especially those of the alkaline earths, play a significant part in the combination and the structural relationships of proteins and nucleic acids. The role of such ions in liberating DNA from nucleoproteins has been demonstrated by Kirby (1957, 1958). Dipositive cations are also known to act as catalysts in biological reactions of triphosphate nucleosides.

Various possibilities of coordination of dipositive cations with nucleotides have been discussed by Brint-

^{*} This work was supported in part by Public Health Service Research Grant A-3909 from the National Institute of Arthritis and Metabolic Diseases, Bethesda, Maryland.

[†] Contribution Number: 1723.